Skip to content

Arguments

Arguments

Arguments supported in the kclassify model as hyperparameters.

Argument Description Default
--base_model vgg16, vgg19, efficientnetB0, mobilenetv2 efficientnetB0
--batch_size (optional) Batch size 32
--lr (optional) Learning rate .01
--has_wandb (optional) Logs to the wandb server False
--preprocessor use the model preprocessor on the inputs False
--featurewise_normalize use featurewise centering and std normalizing True
--train_stats (optional) configuration file with training image statistics; must exist when using the --featurewise_normalize option -
--epochs (optional) Number of epochs to train 1
--optimizer (optional) adam, radam, ranger adam
--loss (optional) Type of loss function for the gradients: for the gradients categorical_crossentropy, or categorical_focal_loss categorical_crossentropy
--dropout (optional) Add a drop out layer False
--horizontal_flip (optional) Add horizontal flip augmentation during training False
--vertical_flip (optional) Add vertical flip augmentation during training False
--early_stop (optional) Add early stopping False
--rotation_range (optional) Apply rotation augmentation between 0-1 as percent of image size during training 0.0
--augment_range (optional) Apply width, shift, and zoom augmentation during training 0-1 as percent of image size 0.0
--shear_range (optional) Apply sheer augmentation during training 0-1 as percent of image size 0.0