Arguments
Arguments
Arguments supported in the kclassify model as hyperparameters.
| Argument | Description | Default |
|---|---|---|
| --base_model | vgg16, vgg19, efficientnetB0, mobilenetv2 | efficientnetB0 |
| --batch_size | (optional) Batch size | 32 |
| --lr | (optional) Learning rate | .01 |
| --has_wandb | (optional) Logs to the wandb server | False |
| --preprocessor | use the model preprocessor on the inputs | False |
| --featurewise_normalize | use featurewise centering and std normalizing | True |
| --train_stats | (optional) configuration file with training image statistics; must exist when using the --featurewise_normalize option | - |
| --epochs | (optional) Number of epochs to train | 1 |
| --optimizer | (optional) adam, radam, ranger | adam |
| --loss | (optional) Type of loss function for the gradients: for the gradients categorical_crossentropy, or categorical_focal_loss | categorical_crossentropy |
| --dropout | (optional) Add a drop out layer | False |
| --horizontal_flip | (optional) Add horizontal flip augmentation during training | False |
| --vertical_flip | (optional) Add vertical flip augmentation during training | False |
| --early_stop | (optional) Add early stopping | False |
| --rotation_range | (optional) Apply rotation augmentation between 0-1 as percent of image size during training | 0.0 |
| --augment_range | (optional) Apply width, shift, and zoom augmentation during training 0-1 as percent of image size | 0.0 |
| --shear_range | (optional) Apply sheer augmentation during training 0-1 as percent of image size | 0.0 |